

Simulation Plans For An EIC Detector Built Around The BaBar Solenoid

Nils Feege

EIC Simulation Meeting, Stony Brook, September 30, 2014

Implementation in sPHENIX Geant4

An event display for SIDIS @ x≈5×10⁻³ and Q²=10 (GeV/c)² **Integrated in PHENIX software framework** Material and field map implemented in details **PH*ENIX** Jin Huang <jhuang@bnl.gov> EIC Software Discussions

Roadmap

Create output objects for **all** sub-detectors based on MC truth information

Implement digitization for sub-detectors as needed as **separate modules**

Use simulation for detector performance studies and physics analyses

Steps In Progress

Tracking: Jin

Simple tracking object based on MC Truth information

Gas-based RICH: Nils

- Add True PID, track and momentum information to output
- Create analysis library for RICH PID

Steel-scintillator HCAL (hadron side): Yuji

- Implement calorimeter geometry 'sPHENIX'-compatible
- Run sPHENIX jet reconstruction

Time Of Flight detector: Yakov

Next Steps

Lead tungstate crystal ECAL (electron side): N/A

Implement calorimeter geometry based on the HCAL code

Lead-scintillator ECAL (hadron side): N/A

• Implement calorimeter geometry based on the HCAL code

Aerogel-based RICH: N/A

Central barrel DIRC: N/A

Zero Degree Calorimeter: N/A

Roman Pots: N/A